


M.C.M. Santos<sup>1</sup>, H.M. Fogarin<sup>1</sup>, C.V.S. Vechi<sup>2</sup>, <u>K.J. Dussán</u><sup>1</sup>, D.D.V. Silva<sup>2</sup>
Presenting author: kelly.medina@unesp.br

hydrolysate from spent coffee grounds

São Paulo State University (Unesp) - Institute of Chemical

<sup>1</sup>Department of Chemical Engineering

<sup>2</sup>Department of Biochemistry and Organic Chemistry

















## Introduction



## **Environmental Context**





 Increasing pressure for sustainable alternatives to fossil fuels



Spent Coffee Grounds (SCG)
 among the most abundant
 residues worldwide
 (20 million tons annually)



- Agro-industrial waste as renewable resource
- Potential for biotechnological applications: biofuel, bioplastic, and industrial biomolecule production





Utilization of spent coffee grounds (SCG) hydrolysates as a sugar source for microbial cultivation;



 Generation of high-value-added products from residual biomass;



 Optimization of SCG pre-treatment for maximizing fermentable sugar release;



 Rhodosporidium toruloides UFMG-CM-Y2896: a promising oleaginous yeast for lipids production;



 Microbial adaptation strategies for enhanced tolerance to toxic and inhibitory compounds.

## Highlights





# Research Objective





01. 🏈

Evaluate SCG hemicellulosic hydrolysate as a fermentation substrate (optimization of SCG pretreatment)

02. 丛

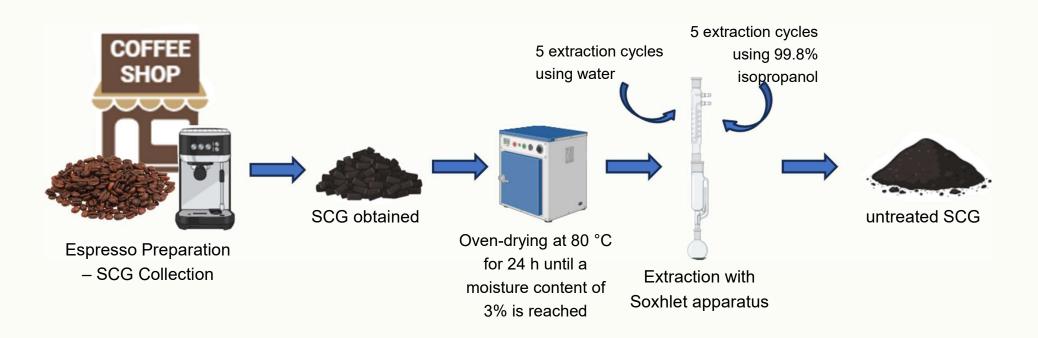
Compare lipid production by adapted and non-adapted *R. toruloides.* 

03.



Identify if adaptation improves tolerance and lipid yield.



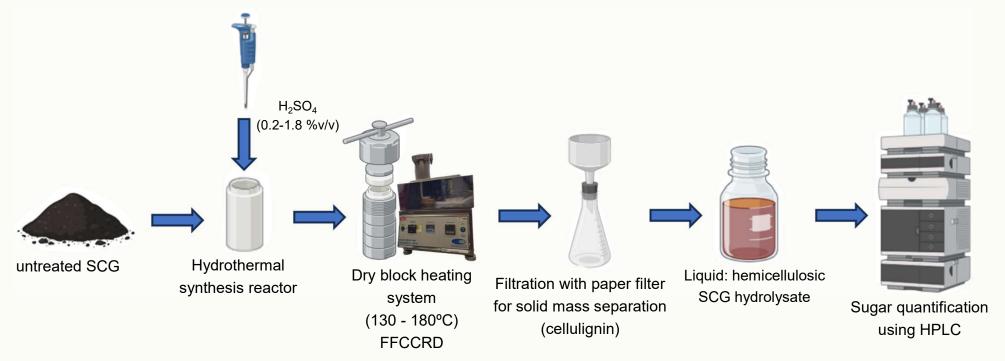



# Methodology





## **Collection and Preparation of Biomass**




• After the removal of extractive compounds, the material was identified as **untreated SCG**. The characterization of untreated SCG was performed using the standard NREL method [1].







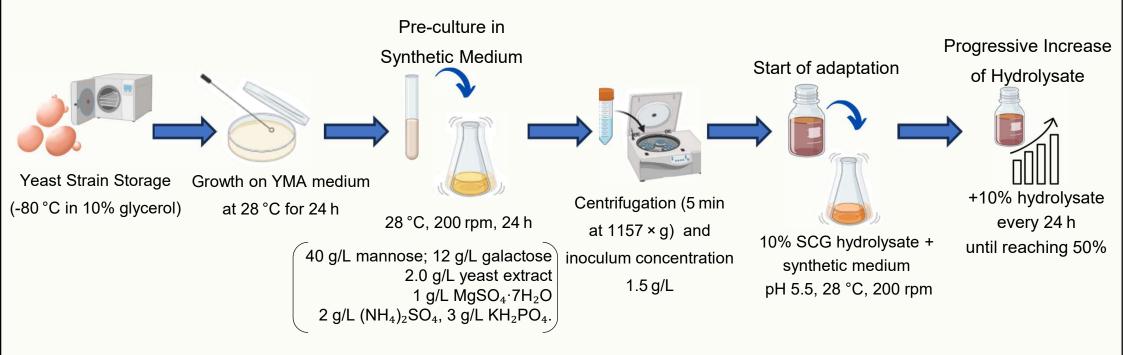


• The response variable was the total sugar concentration obtained in the liquid fraction (sum of the concentrations of **cellobiose**, **glucose**, **xylose**, **galactose**, **arabinose**, **and mannose**).



**Table 1** Coded levels and real levels of fractional-factorial central composite rotational design (FFCCRD) (24-1) for evaluating the extraction of monosaccharides in the diluted acid pretreatment process of spent coffee grounds.

| Ermanimanta                          | Coded Variables |       |       |       |       |
|--------------------------------------|-----------------|-------|-------|-------|-------|
| Experiments                          | $X_1$           | $X_2$ | $X_3$ | 3     | 4     |
| 1                                    | -1              | -1    | -1    | -1    |       |
| 2                                    | 1               | -1    | -1    | 1     |       |
| 3                                    | -1              | 1     | -1    | 1     |       |
| 4                                    | 1               | 1     | -1    | -1    |       |
| 5                                    | -1              | -1    | 1     | 1     |       |
| 6                                    | 1               | -1    | 1     | -1    |       |
| 7                                    | 1               | 1     | 1     | 1     |       |
| 8                                    | 1               | 1     | 1     | 1     |       |
| 9                                    | 0               | 0     | 0     | 0     |       |
| 10                                   | 0               | 0     | 0     | 0     |       |
| 11                                   | 0               | 0     | 0     | 0     |       |
| 12                                   | -1.68           | 0     | 0     | 0     |       |
| 13                                   | 1.68            | 0     | 0     | 0     |       |
| 14                                   | 0               | -1.68 | 0     | 0     |       |
| 15                                   | 0               | 1.68  | 0     | 0     |       |
| 16                                   | 0               | 0     | -1.68 | 0     |       |
| 17                                   | 0               | 0     | 1.68  | 0     |       |
| 18                                   | 0               | 0     | 0     | -1.68 |       |
| 19                                   | 0               | 0     | 0     | 1.68  |       |
| Variables/Levels                     | -1.68           | -1    | 0     | 1     | 1.68  |
| Temperature, °C $(X_l)$              | 130             | 140   | 155   | 170   | 180   |
| $H_2SO_4$ , %v/v (X <sub>2</sub> )   | 0.2             | 0.5   | 1     | 1.5   | 1.8   |
| Reaction time, min (X3)              | 30              | 40    | 55    | 70 80 |       |
| Solid-liquid ratio (X <sub>4</sub> ) | 01:06           | 01:08 | 01:11 | 01:14 | 01:16 |

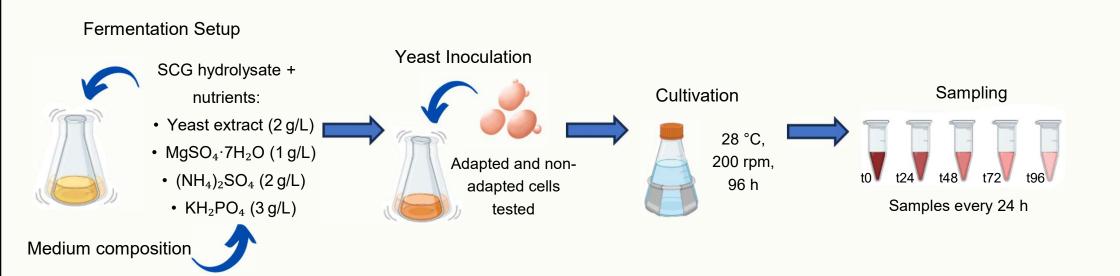



- •2<sup>4-1</sup> fractional-factorial central composite rotational design (FFCCRD), evaluating 4 independent variables: solid-liquid ratio, temperature, acid concentration, and reaction time, totaling 19 experiments (Table 1).
- •The condition that resulted in hydrolysate with a higher concentration of fermentable sugars was chosen and used in the fermentation stage.



## Adaptation of R. toruloides to SCG Hydrolysate






• Cells were gradually exposed to increasing concentrations (10–50%) of SCG hydrolysate to enhance tolerance to inhibitors. The adapted strain was then used in fermentation assays.

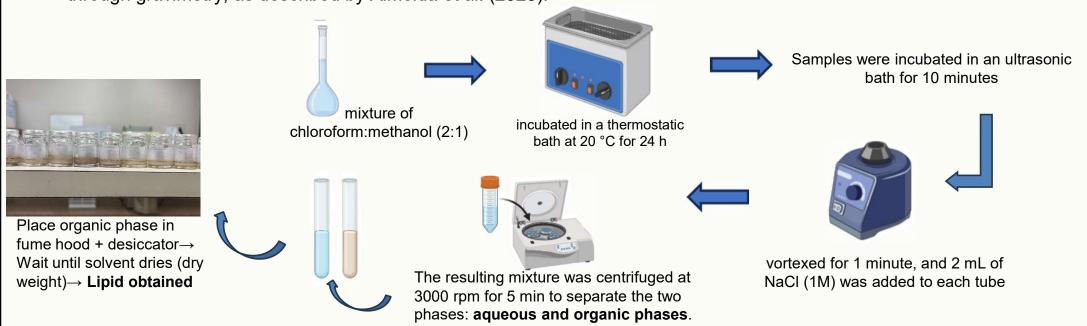








- Control experiments with non-adapted *R. toruloides* cells were also performed.
- · Cell growth, lipid yield, and productivity were evaluated






## **Analytical Methods and Statistic Analysis**

### **Microbial Lipid Extraction**

• Microbial lipid was obtained using the extraction method founded and adapted by Folch et al. (1957) and quantified through gravimetry, as described by Almeida et al. (2023):



Almeida ELM, Ventorim RZ, Ferreira MAM, et al (2023) New Papiliotrema laurentii UFV-1 strains with improved acetic acid tolerance selected by adaptive laboratory evolution. Fungal Genetics and Biology 164:103765. https://doi.org/10.1016/J.FGB.2022.103765

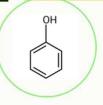


## **Analytical Methods and Statistic Analysis**

• The **lipid content** (%), **lipid concentration** (mg·L<sup>-1</sup>), **lipid productivity** (mg·L<sup>-1</sup>·h<sup>-1</sup>) and **lipid yield** (g.g<sup>-1</sup>) were determined using the respective equations:

$$Lipid\ content\ (\%) = \frac{final\ lipid\ mass\ (mg)}{dry\ biomass\ mass\ (mg)} \times 100 \tag{1}$$

Lipid titer 
$$(g \cdot L^{-1}) = Final fermentation biomass conc. (g/L) \times Lipid content (%)$$
 (2)


Lipid productivity 
$$(g \cdot L^{-1} \cdot h^{-1}) = \frac{Lipid \ titer \ (g \cdot L^{-1})}{fermentation \ time \ (h)}$$
 (3)

$$Lipid\ yield\ (g.g^{-1}) = \frac{lipid\ titer\ (g.L^{-1})}{a_i - a_f} \tag{4}$$

Almeida ELM, Ventorim RZ, Ferreira MAM, et al (2023) New Papiliotrema laurentii UFV-1 strains with improved acetic acid tolerance selected by adaptive laboratory evolution. Fungal Genetics and Biology 164:103765. https://doi.org/10.1016/J.FGB.2022.103765

## **Analytical Methods and Statistic Analysis**

02. M



**Concentration of sugars** 

was quantified using HPLC equipped with HPX-87P column and a refractive index detector using distillated water as mobile phase.

Cellular growth was assessed by measuring OD600 nm and then converted into biomass concentration using a utilization of a calibration curve.

Total phenol content was measured by the colorimetric method of Folin-Ciocalteu (Singleton et al. 1999), with modifications

Statistical analysis: analysis of variance (ANOVA) and multiple regression methods with the STATISTICA software

Almeida ELM, Ventorim RZ, Ferreira MAM, et al (2023) New Papiliotrema laurentii UFV-1 strains with improved acetic acid tolerance selected by adaptive laboratory evolution. Fungal Genetics and Biology 164:103765. https://doi.org/10.1016/J.FGB.2022.103765



# Results

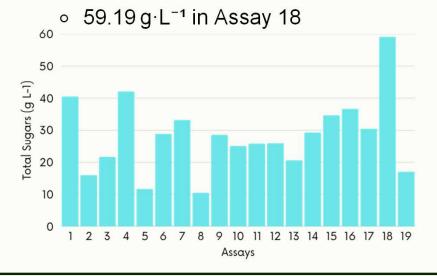




### Characterization of Untreated SCG

- High hemicellulose content (34.68%), with mannose as the main monosaccharide.
- Similar composition to Ballesteros et al. (2014)
   in hemicellulose, cellulose, and total lignin.
- Lower galactose (5.92% vs. 16.43%) and soluble lignin (2.97% vs. 6.31%) compared to literature.
- Variations attributed to SCG origin, coffee type, and analytical methods.

Table 2 Characterization of SCG


| SCG fraction      | Present work     | Ballesteros et al. 2014 |
|-------------------|------------------|-------------------------|
| Hemicellulose (%) | $34.68 \pm 4.31$ | $39.10 \pm 1.94$        |
| Mannose (g L-1)   | $17.45 \pm 1.52$ | $19.07 \pm 0.85$        |
| Galactose (g L-1) | $5.92\pm0.49$    | $16.43 \pm 1.66$        |
| Arabinose (g L-1) | $1.88\pm0.19$    | $3.60 \pm 0.52$         |
| Xylose (g L-1)    | $9.43 \pm 2.99$  | ND                      |
| Total lignin (%)  | $22.22\pm0.12$   | $23.90 \pm 1.70$        |
| Insoluble lignin  | $19.25\pm0.33$   | $17.59 \pm 1.56$        |
| Soluble lignin    | $2.97\pm0.40$    | $6.31 \pm 0.37$         |
| Extractives (%)   | $21.75 \pm 1.96$ | NA                      |
| Cellulose (%)     | $19.67 \pm 1.56$ | $12.40 \pm 0.79$        |
| Acetyl (%)        | $1.23\pm0.28$    | NA                      |
| Ashes (%)         | $0.45 \pm 0.02$  | $1.30 \pm 0.10$         |



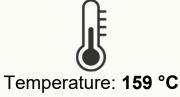


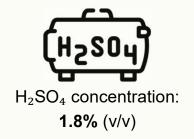
## Pretreatment of Biomass – Results and Optimization

- Total sugar yields varied from 10.50 to 59.19 g·L⁻¹ among the 19 FFCCRD assays (Table 3).
- Highest experimental yield:



**Table 3** Total sum of sugars concentration after pretreatment of SCG according to fractional-factorial central composite rotational design (FFCCRD) (2<sup>4-1</sup>)


| -      | Temperature | H <sub>2</sub> SO <sub>4</sub> | Reaction time | Solid-liquid | Total Sugars                   |  |
|--------|-------------|--------------------------------|---------------|--------------|--------------------------------|--|
| Assays | (°C)        | (%v/v)                         | (min)         | ratio        | $(\mathbf{g} \mathbf{L}^{-1})$ |  |
| 1      | 140         | 0.50                           | 40.0          | 8.00         | 40.55                          |  |
| 2      | 170         | 0.50                           | 40.0          | 14.00        | 16.01                          |  |
| 3      | 140         | 1.50                           | 40.0          | 14.00        | 21.69                          |  |
| 4      | 170         | 1.50                           | 40.0          | 8.00         | 42.11                          |  |
| 5      | 140         | 0.50                           | 70.0          | 14.00        | 11.73                          |  |
| 6      | 170         | 0.50                           | 70.0          | 8.00         | 28.92                          |  |
| 7      | 140         | 1.50                           | 70.0          | 8.00         | 33.18                          |  |
| 8      | 170         | 1.50                           | 70.0          | 14.00        | 10.50                          |  |
| 9      | 155         | 1.00                           | 55.0          | 11.00        | 28.58                          |  |
| 10     | 155         | 1.00                           | 55.0          | 11.00        | 25.12                          |  |
| 11     | 155         | 1.00                           | 55.0          | 11.00        | 25.86                          |  |
| 12     | 130         | 1.00                           | 55.0          | 11.00        | 25.99                          |  |
| 13     | 180         | 1.00                           | 55.0          | 11.00        | 20.66                          |  |
| 14     | 155         | 0.15                           | 55.0          | 11.00        | 29.32                          |  |
| 15     | 155         | 1.80                           | 55.0          | 11.00        | 34.65                          |  |
| 16     | 155         | 1.00                           | 30.0          | 11.00        | 36.68                          |  |
| 17     | 155         | 1.00                           | 80.0          | 11.00        | 30.50                          |  |
| 18     | 155         | 1.00                           | 55.0          | 6.00         | 59.19                          |  |
| 19     | 155         | 1.00                           | 55.0          | 16.00        | 17.07                          |  |






## Pretreatment of Biomass – Optimization

### Predicted optimal condition (STATISTICA model):









S/L ratio: 1:6

- Selected to balance sugar release and inhibitor formation.
- Optimization confirms the importance of temperature and S/L ratio in depolymerizing SCG [2, 3].
- Statistical modeling helps identify robust, scalable conditions even if not directly tested [4].

[2] Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews 36:91–106. [3] Światek K, Gaag S, Klier A, et al (2020) Acid Hydrolysis of Lignocellulosic Biomass: Sugars and Furfurals Formation. Catalysts 10:437. https://doi.org/10.3390/catal10040437

[4] Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7. https://doi.org/10.1186/s40643-017-0137-9

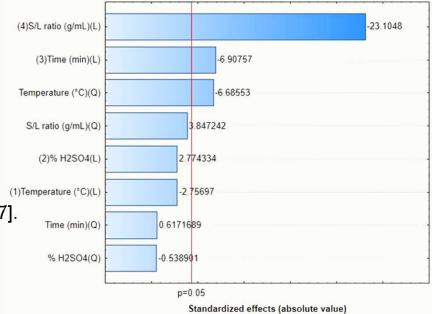


### Pretreatment of Biomass - Effect of Parameters and Key Observations

#### **Effect of Variables:**

- S/L Ratio was the most significant factor (Fig. 1):
  - Lower S/L (1:6) enhanced contact between biomass and acid, boosting sugar release.
  - Higher S/L values reduced efficiency due to dilution effects [5].

#### Temperature:


- 159 °C near the upper limit favored hemicellulose and cellulose solubilization.
- Excessive heat may cause sugar degradation to furfural and HMF [6; 7].

#### • H<sub>2</sub>SO<sub>4</sub> Concentration:

 1.8% found sufficient for catalysis without excess degradation or corrosion [8].

#### Reaction Time:

o 37 min balanced hydrolysis efficiency and minimized thermal degradation [3].



**Fig. 1** Pareto chart for standardized effects of factors studied in the pretreatment of spent coffee grounds (SCG).

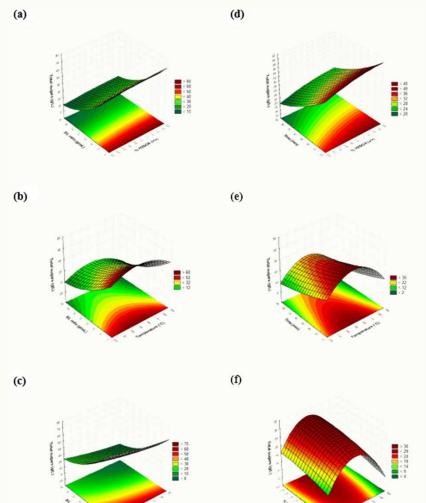
<sup>[8]</sup> Branska B, Koppova K, Husakova M, Patakova P (2024) Application of fed-batch strategy to fully eliminate the negative effect of lignocellulose-derived inhibitors in ABE fermentation. Biotechnology for Biofuels and Bioproducts 17:87. https://doi.org/10.1186/s13068-024-02520-6



<sup>[3]</sup> Świątek K, Gaag S, Klier A, et al (2020) Acid Hydrolysis of Lignocellulosic Biomass: Sugars and Furfurals Formation. Catalysts 10:437. https://doi.org/10.3390/catal/10040437

<sup>[5]</sup> Yu Y, Wu J, Ren X, et al (2022) Steam explosion of lignocellulosic biomass for multiple advanced bioenergy processes: A review. Renewable and Sustainable Energy Reviews 154:111871. https://doi.org/10.1016/j.rser.2021.111871

<sup>[6]</sup> Brienzo M, Siqueira AF, Milagres AMF (2009) Search for optimum conditions of sugarcane bagasse hemicellulose extraction. Biochem Eng J 46:199–204. https://doi.org/10.1016/j.bej.2009.05.012


<sup>[7]</sup> Ilanidis D, Stagge S, Jönsson LJ, Martín C (2021) Hydrothermal Pretreatment of Wheat Straw: Effects of Temperature and Acidity on Byproduct Formation and Inhibition of Enzymatic Hydrolysis and Ethanolic Fermentation. Agronomy 11:487. https://doi.org/10.3390/agronomy11030487

## Pretreatment of Biomass – Effect of Parameters and Key Observations



- Confirmed interaction effects between variables.
- Intermediate temperature and acid, combined with moderate reaction time and lower S/L, maximize yield.
- Emphasized importance of process balance to prevent byproduct formation and inhibitor generation.

**Fig 2** Response surface plots showing the effects of process variables on total sugar release: (a) Solid-liquid ratio vs.  $H_2SO_4$  (% v/v); (b) Solid-liquid ratio vs. Temperature; (c) Solid-liquid ratio vs. Reaction time; (d) Reaction time vs.  $H_2SO_4$  (% v/v); (e) Reaction time vs. Temperature; (f)  $H_2SO_4$  (% v/v) vs. Temperature.








### Fermentative Performance: Sugar Consumption

- Fermentation performed with adapted and non-adapted R. toruloides
  - in SCG hydrolysate.
- Hexose consumption (glucose and mannose):
  - Efficient uptake by both strains.
  - Glucose decreased from ~2.0 to ~0.9 g·L⁻¹ over 96 h.
  - Mannose consumption was gradual (~41% for both).
  - No significant difference between strains (p < 0.05).</li>
- Pentose consumption (arabinose and galactose):
  - Low assimilation (<15%) for both strains.</li>
  - Likely inhibited by total phenols (1.52 g·L⁻¹ in hydrolysate).
  - Phenolic compounds impair sugar metabolism via ROS production [9, 10].

**Fig. 3** - Mannose (circle) and glucose (square) consumption from fermentations of SCG hydrolysate by adapted (green symbol) and non-adapted (blue symbol) *R. toruloides* UFMG-CM-Y2896 cells.





[9] Wang S, Sun X, Yuan Q (2018) Strategies for enhancing microbial tolerance to inhibitors for biofuel production: A review. Bioresour Technol 258:302–309. https://doi.org/10.1016/I.BIORTECH.2018.03.064

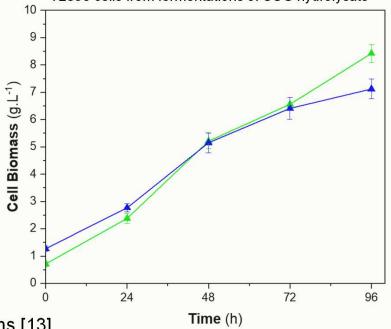
[10] Liu Z, Fels M, Dragone G, Mussatto SI (2021) Effects of inhibitory compounds derived from lignocellulosic biomass on the growth of the wild-type and evolved oleaginous yeast Rhodosporidium toruloides. Ind Crops Prod 170:113799. https://doi.org/10.1016/J.INDCROP.2021.113799





#### · Cell growth profile:

- No lag phase or diauxic behavior observed.
- Biomass reached ~7.0 8.5 g·L⁻¹ after 96 h.
- pH remained stable (~5.5) throughout fermentation.
- Adapted and non-adapted strains showed similar performance.


#### Technical conclusion:

- o Adaptation did not improve sugar uptake or biomass yield.
- Process can be simplified by removing the adaptation step, reducing time and cost.

#### Supported by previous studies:

- R. toruloides prefers hexoses in lignocellulosic hydrolysates [12, 12].
- No significant benefits from prior adaptation reported in similar fermentations [13].

**Fig. 4** - Cell growth of adapted (green symbol) and non-adapted (blue symbol) *R. toruloides* UFMG-CM-Y2896 cells from fermentations of SCG hydrolysate



<sup>[11]</sup> Yaegashi J, Kirby J, Ito M, et al (2017) Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts. Biotechnol Biofuels 10:241. https://doi.org/10.1186/s13068-017-0927-5

[13] De Matos JP, De Souza KR, Dos Santos AS, De Araújo Pantoja L (2018) FERMENTAÇÃO ALCOÓLICA DE HIDROLISADO HEMICELULÓSICO DE TORTA DE GIRASSOL POR Galactomyces geotrichum UFVJM-R10 E Candida akabanensis UFVJM-R131. Quim Nova 41:23–29. https://doi.org/10.21577/0100-4042.20170146



<sup>[12]</sup> Jagtap SS, Bedekar AA, Liu JJ, et al (2019) Production of galactitol from galactose by the oleaginous yeast Rhodosporidium toruloides IFO0880. Biotechnol Biofuels 12:. https://doi.org/10.1186/s13068-019-1586-5



## Fermentative Performance: Lipid Production

- No significant difference (p < 0.05) was observed between adapted and non-adapted cells for lipid titer, productivity (Q<sub>P</sub>), and yield (Y<sub>P/S</sub>).
- Adaptation did not improve lipid performance, unlike in de Almeida et al. (2024) with sugarcane bagasse hydrolysate.
- Both strains reached similar titers (~4.1–4.3 g·L<sup>-1</sup>) and yields (~0.23–0.24 g·g<sup>-1</sup>), despite 1.52 g·L<sup>-1</sup> of total phenols.
- · Compared to other studies:
  - o Di Fidio et al. (2024): Q<sub>P</sub> ~0.024 g·L⁻¹·h⁻¹
  - Almeida et al. (2023):  $Y_{P/S} = 0.131 \text{ g} \cdot \text{g}^{-1}$
  - This study: 2–3× higher Q<sub>P</sub> and ~1.8× higher yield
- Confirms the robustness of R. toruloides in non-detoxified SCG hydrolysate for lipid production.

**Table 4** - Performance parameters for lipid production during fermentation of spent coffee grounds hydrolysate by adapted and non-adapted R. toruloides UFMG-CM-Y2896 cells. The reported values include lipid titter, lipid productivity ( $Q_P$ ) and yield ( $Y_{P/S}$ )

|         | Time<br>(h) | Lipid Titer<br>(g L <sup>-1</sup> ) | Lipid Productivity $(g L^{-1} h^{-1})$ | Lipid Yield<br>(g g <sup>-1</sup> ) |
|---------|-------------|-------------------------------------|----------------------------------------|-------------------------------------|
|         | 24          | $1.125 \pm 0.085$                   | $0.046\pm0.006$                        | $0.079 \pm 0.018$                   |
| Adapted | 48          | $2.586 \pm 0.236$                   | $0.053 \pm 0.004$                      | $0.164 \pm 0.021$                   |
|         | 72          | $3.157 \pm 0.079$                   | $0.043 \pm 0.001$                      | $0.169\pm0.001$                     |
|         | 96          | $4.271 \pm 0.397$                   | $0.044\pm0.004$                        | $0.241 \pm 0.021$                   |
|         | 24          | $1.838 \pm 0.305$                   | $0.076 \pm 0.005$                      | $0.115 \pm 0.021$                   |
| Non-    | 48          | $2.909 \pm 0.342$                   | $0.060\pm0.007$                        | $0.191 \pm 0.071$                   |
| Adapted | 72          | $3.678\pm0.206$                     | $0.051 \pm 0.002$                      | $0.232 \pm 0.047$                   |
|         | 96          | $4.099 \pm 0.004$                   | $0.042 \pm 0.001$                      | $0.219 \pm 0.003$                   |

The results shown are means of two replicates followed by the standard deviation.





## Conclusion







•This study demonstrated the feasibility of utilizing spent coffee grounds (SCG) as a lignocellulosic feedstock to produce fermentable hydrolysates.



• The optimization of the acid pretreatment process identified key operational parameters—temperature, sulfuric acid concentration, reaction time, and solid-to-liquid ratio—that yielded a hydrolysate rich in fermentable sugars (59.19 g·L<sup>-1</sup>), predominantly mannose and galactose.





The SCG hydrolysate, without a detoxification step, served as a fermentation medium for *Rhodosporidium toruloides* UFMG-CM-Y2896.



No significant differences were observed in the fermentative performance between adapted and non-adapted yeast cells, both of which exhibited effective growth in the hydrolysate and preferential consumption of glucose and mannose, resulting in lipid accumulation of approximately 4.0 g·L<sup>-1</sup>.







The finds, although preliminary, support the development of strategies to valorization and enhance the applicability of SCG as a raw material in sustainable biorefineries and the robust performance of *R. toruloides* in non-detoxified SCG hydrolysate supports its application in streamlined, cost-effective fermentation processes for value-added lipids synthesis.





## Future Work





•Test performance in detoxified vs. non-detoxified conditions;

Use of fed-batch or continuous reactors;

•Explore co-fermentation with other microorganisms;

•Techno-economic analysis for scale-up.



### **ACKNOWLEDGEMENTS**



This study was financed, in part, by the São Paulo Research Foundation (FAPESP), Brasil. Process Numbers: #2022/03000-0; #2022/11905-3; #2024/05646-0; #2023/15075-8; #2023/01752-8; #2024/06741-7 and National Council for Scientific and Technological Development – CNPq. Project number #316230/2023-5.





## THANK YOU