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Environmental Context

• Increasing pressure for 

sustainable alternatives to 

fossil fuels

• Spent Coffee Grounds (SCG) 

among the most abundant 

residues worldwide 

(20 million tons annually)

• Agro-industrial waste as 

renewable resource

• Potential for biotechnological 

applications: biofuel, 

bioplastic, and industrial 

biomolecule production 

4



• Utilization of spent coffee grounds (SCG) hydrolysates as

a sugar source for microbial cultivation;

• Generation of high-value-added products from residual

biomass;

• Optimization of SCG pre-treatment for maximizing

fermentable sugar release;

• Rhodosporidium toruloides UFMG-CM-Y2896: a promising

oleaginous yeast for lipids production;

• Microbial adaptation strategies for enhanced tolerance to

toxic and inhibitory compounds.
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Research Objective
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01.

Evaluate SCG hemicellulosic

hydrolysate as a fermentation 

substrate (optimization of 

SCG pretreatment )

03.

Identify if adaptation 

improves tolerance and 

lipid yield.

02.

Compare lipid production by 

adapted and non-adapted 

R. toruloides.



Methodology
03.
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• After the removal of extractive compounds, the material was identified as untreated SCG. The characterization of

untreated SCG was performed using the standard NREL method [1].
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Espresso Preparation 

– SCG Collection

SCG obtained 
Oven-drying at 80 °C 

for 24 h until a 

moisture content of   

3% is reached

5 extraction cycles 

using water

5 extraction cycles 

using 99.8% 

isopropanol

Extraction with 

Soxhlet apparatus

untreated SCG

Collection and Preparation of Biomass

[1] Sluiter A, Hames B, Ruiz R, et al (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure 1617:1–16



• The response variable was the total sugar concentration obtained in the liquid fraction (sum of the

concentrations of cellobiose, glucose, xylose, galactose, arabinose, and mannose).
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untreated SCG Hydrothermal 

synthesis reactor

H2SO4

(0.2-1.8 %v/v) 

Dry block heating 

system

(130 - 180ºC)

FFCCRD

Filtration with paper filter 

for solid mass separation 

(cellulignin)

Liquid: hemicellulosic 

SCG hydrolysate 
Sugar quantification 

using HPLC 

Pretreatment of SCG Biomass



•24-1 fractional-factorial central composite

rotational design (FFCCRD), evaluating 4

independent variables: solid-liquid ratio,

temperature, acid concentration, and reaction

time, totaling 19 experiments (Table 1).

•The condition that resulted in hydrolysate with a

higher concentration of fermentable sugars was

chosen and used in the fermentation stage.
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Table 1 Coded levels and real levels of fractional-factorial central composite 

rotational design (FFCCRD) (24-1) for evaluating the extraction of monosaccharides 

in the diluted acid pretreatment process of spent coffee grounds.
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Yeast Strain Storage   

(-80ௗ°C in 10% glycerol)

Growth on YMA medium 

at 28ௗ°C for 24ௗh

Pre-culture in 

Synthetic Medium

28ௗ°C, 200ௗrpm, 24ௗh
Centrifugation (5ௗmin 

at 1157ௗ×ௗg)  and 

inoculum concentration 

1.5ௗg/L

Start of adaptation

10% SCG hydrolysate + 

synthetic medium

pH 5.5, 28 °C, 200 rpm

Progressive Increase 

of Hydrolysate

+10% hydrolysate 

every 24ௗh

until reaching 50%

Adaptation of R. toruloides to SCG Hydrolysate

• Cells were gradually exposed to increasing concentrations (10–50%) of SCG hydrolysate to enhance tolerance to 

inhibitors. The adapted strain was then used in fermentation assays.

40 g/L mannose; 12 g/L galactose
2.0 g/L yeast extract
1 g/L MgSO₄·7H₂O

2 g/L (NH₄)₂SO₄, 3 g/L KH₂PO₄. 



SCG hydrolysate + 

nutrients:

• Yeast extract (2ௗg/L)

• MgSO₄·7H₂O (1ௗg/L)

• (NH₄)₂SO₄ (2ௗg/L)

• KH₂PO₄ (3ௗg/L)
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Fermentation Setup

Medium composition

Yeast Inoculation

Adapted and non-

adapted cells 

tested

Cultivation

28 °C, 

200 rpm, 

96 h t0 t24 t48 t72 t96

Sampling

Samples every 24 h

• Control experiments with non-adapted R. toruloides cells were also performed. 

• Cell growth, lipid yield, and productivity were evaluated

Fermentation – Lipid Production



• Microbial lipid was obtained using the extraction method founded and adapted by Folch et al. (1957) and quantified

through gravimetry, as described by Almeida et al. (2023):
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Microbial Lipid Extraction

Almeida ELM, Ventorim RZ, Ferreira MAM, et al (2023) New Papiliotrema laurentii UFV-1 strains with improved acetic acid tolerance selected by adaptive laboratory evolution. Fungal Genetics

and Biology 164:103765. https://doi.org/10.1016/J.FGB.2022.103765

mixture of 
chloroform:methanol (2:1) incubated in a thermostatic 

bath at 20 °C for 24 h 

vortexed for 1 minute, and 2 mL of 
NaCl (1M) was added to each tubeThe resulting mixture was centrifuged at 

3000 rpm for 5 min to separate the two 
phases: aqueous and organic phases.

Samples were incubated in an ultrasonic 
bath for 10 minutes

Analytical Methods and Statistic Analysis

Place organic phase in 
fume hood + desiccator→ 
Wait until solvent dries (dry 
weight)→ Lipid obtained



• The lipid content (%), lipid concentration (mg·L⁻¹), lipid productivity (mg·L⁻¹·h⁻¹) and lipid yield (g.g-1) were

determined using the respective equations:
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Almeida ELM, Ventorim RZ, Ferreira MAM, et al (2023) New Papiliotrema laurentii UFV-1 strains with improved acetic acid tolerance selected by adaptive laboratory evolution. Fungal Genetics

and Biology 164:103765. https://doi.org/10.1016/J.FGB.2022.103765

Analytical Methods and Statistic Analysis
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Analytical Methods and Statistic Analysis

Almeida ELM, Ventorim RZ, Ferreira MAM, et al (2023) New Papiliotrema laurentii UFV-1 strains with improved acetic acid tolerance selected by adaptive laboratory evolution. Fungal Genetics

and Biology 164:103765. https://doi.org/10.1016/J.FGB.2022.103765

04.Statistical analysis: analysis of variance (ANOVA) and multiple 

regression methods with the STATISTICA software



Results
04.
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Characterization of Untreated SCG

• High hemicellulose content (34.68%), with 

mannose as the main monosaccharide.

• Similar composition to Ballesteros et al. (2014) 

in hemicellulose, cellulose, and total lignin.

• Lower galactose (5.92% vs. 16.43%) and 

soluble lignin (2.97% vs. 6.31%) compared to 

literature.

• Variations attributed to SCG origin, coffee type, 

and analytical methods.
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Table 2 Characterization of SCG

Ballesteros LF, Teixeira JA, Mussatto SI (2014a) Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin.

Food Bioproc Tech 7:3493–3503. https://doi.org/10.1007/s11947-014-1349-z



Pretreatment of Biomass – Results and Optimization

• Total sugar yields varied from 10.50 to 

59.19ௗg·L⁻¹ among the 19 FFCCRD assays 

(Table 3).

• Highest experimental yield:

⚬ 59.19ௗg·L⁻¹ in Assay 18

19

Table 3 Total sum of sugars concentration after pretreatment of SCG according to 

fractional-factorial central composite rotational design (FFCCRD) (24-1) 



• Selected to balance sugar release and inhibitor formation.

• Optimization confirms the importance of temperature and S/L ratio in depolymerizing SCG [2 , 3].

• Statistical modeling helps identify robust, scalable conditions — even if not directly tested [4].

Pretreatment of Biomass – Optimization
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Temperature: 159 °C H₂SO₄ concentration: 

1.8% (v/v)
Reaction time: 37 

minutes

S/L ratio: 1:6

Predicted optimal condition (STATISTICA model):

[2] Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews 36:91–106.

[3] Świątek K, Gaag S, Klier A, et al (2020) Acid Hydrolysis of Lignocellulosic Biomass: Sugars and Furfurals Formation. Catalysts 10:437. https://doi.org/10.3390/catal10040437

[4] Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7. https://doi.org/10.1186/s40643-017-0137-9



Effect of Variables:

• S/L Ratio was the most significant factor (Fig. 1):

⚬ Lower S/L (1:6) enhanced contact between biomass and acid,                

boosting sugar release.

⚬ Higher S/L values reduced efficiency due to dilution effects [5].

• Temperature:

⚬ 159 °C near the upper limit favored hemicellulose and cellulose                 

solubilization.

⚬ Excessive heat may cause sugar degradation to furfural and HMF [6; 7].

• H₂SO₄ Concentration:

⚬ 1.8% found sufficient for catalysis without excess degradation                          

or corrosion [8].

• Reaction Time:

⚬ 37 min balanced hydrolysis efficiency and minimized thermal degradation [3].

Pretreatment of Biomass – Effect of Parameters and Key Observations
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Fig. 1 Pareto chart for standardized effects of 

factors studied in the pretreatment of spent coffee 

grounds (SCG).

[3] Świątek K, Gaag S, Klier A, et al (2020) Acid Hydrolysis of Lignocellulosic Biomass: Sugars and Furfurals Formation. Catalysts 10:437. https://doi.org/10.3390/catal10040437

[5] Yu Y, Wu J, Ren X, et al (2022) Steam explosion of lignocellulosic biomass for multiple advanced bioenergy processes: A review. Renewable and Sustainable Energy Reviews 154:111871. 

https://doi.org/10.1016/j.rser.2021.111871 

[6] Brienzo M, Siqueira AF, Milagres AMF (2009) Search for optimum conditions of sugarcane bagasse hemicellulose extraction. Biochem Eng J 46:199–204. https://doi.org/10.1016/j.bej.2009.05.012

[7] Ilanidis D, Stagge S, Jönsson LJ, Martín C (2021) Hydrothermal Pretreatment of Wheat Straw: Effects of Temperature and Acidity on Byproduct Formation and Inhibition of Enzymatic Hydrolysis and Ethanolic 

Fermentation. Agronomy 11:487. https://doi.org/10.3390/agronomy11030487

[8] Branska B, Koppova K, Husakova M, Patakova P (2024) Application of fed-batch strategy to fully eliminate the negative effect of lignocellulose-derived inhibitors in ABE fermentation. Biotechnology for Biofuels and 

Bioproducts 17:87. https://doi.org/10.1186/s13068-024-02520-6



• Confirmed interaction effects between variables.

• Intermediate temperature and acid, combined with 

moderate reaction time and lower S/L, maximize yield.

• Emphasized importance of process balance to prevent 

byproduct formation and inhibitor generation.

Pretreatment of Biomass – Effect of Parameters and Key 
Observations
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Fig 2 Response surface plots showing the effects of process variables on total sugar

release: (a) Solid-liquid ratio vs. H₂SO₄ (% v/v); (b) Solid-liquid ratio vs. Temperature;

(c) Solid-liquid ratio vs. Reaction time; (d) Reaction time vs. H₂SO₄ (% v/v);

(e) Reaction time vs. Temperature; (f) H₂SO₄ (% v/v) vs. Temperature.



• Fermentation performed with adapted and non-adapted R. toruloides

in SCG hydrolysate.

• Hexose consumption (glucose and mannose):

⚬ Efficient uptake by both strains.

⚬ Glucose decreased from ~2.0 to ~0.9 g·L⁻¹ over 96 h.

⚬ Mannose consumption was gradual (~41% for both).

⚬ No significant difference between strains (pௗ<ௗ0.05).

• Pentose consumption (arabinose and galactose):

⚬ Low assimilation (<15%) for both strains.

⚬ Likely inhibited by total phenols (1.52ௗg·L⁻¹ in hydrolysate).

⚬ Phenolic compounds impair sugar metabolism via ROS production [9 , 10].

Fermentative Performance: Sugar Consumption
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Fig. 3 - Mannose (circle) and glucose (square) consumption from 

fermentations of SCG hydrolysate by adapted (green symbol) and 

non-adapted (blue symbol) R. toruloides UFMG-CM-Y2896 cells.

[9] Wang S, Sun X, Yuan Q (2018) Strategies for enhancing microbial tolerance to inhibitors for biofuel production: A review. Bioresour Technol 258:302–309.
https://doi.org/10.1016/J.BIORTECH.2018.03.064
[10] Liu Z, Fels M, Dragone G, Mussatto SI (2021) Effects of inhibitory compounds derived from lignocellulosic biomass on the growth of the wild-type and evolved
oleaginous yeast Rhodosporidium toruloides. Ind Crops Prod 170:113799. https://doi.org/10.1016/J.INDCROP.2021.113799



• Cell growth profile:

⚬ No lag phase or diauxic behavior observed.

⚬ Biomass reached ~7.0 – 8.5 g·L⁻¹ after 96 h.

⚬ pH remained stable (~5.5) throughout fermentation.

⚬ Adapted and non-adapted strains showed similar performance.

• Technical conclusion:

⚬ Adaptation did not improve sugar uptake or biomass yield.

⚬ Process can be simplified by removing the adaptation step, reducing time                                        

and cost.

• Supported by previous studies:

⚬ R. toruloides prefers hexoses in lignocellulosic hydrolysates [12 , 12].

⚬ No significant benefits from prior adaptation reported in similar fermentations [13].

Fermentative Performance: Biomass Growth
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Fig. 4 - Cell growth of adapted (green symbol)  and     

non-adapted (blue symbol) R. toruloides UFMG-CM-

Y2896 cells from fermentations of SCG hydrolysate 

[11] Yaegashi J, Kirby J, Ito M, et al (2017) Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts. Biotechnol Biofuels 10:241.

https://doi.org/10.1186/s13068-017-0927-5

[12] Jagtap SS, Bedekar AA, Liu JJ, et al (2019) Production of galactitol from galactose by the oleaginous yeast Rhodosporidium toruloides IFO0880. Biotechnol Biofuels 12:. https://doi.org/10.1186/s13068-

019-1586-5

[13] De Matos JP, De Souza KR, Dos Santos AS, De Araújo Pantoja L (2018) FERMENTAÇÃO ALCOÓLICA DE HIDROLISADO HEMICELULÓSICO DE TORTA DE GIRASSOL POR Galactomyces

geotrichum UFVJM-R10 E Candida akabanensis UFVJM-R131. Quim Nova 41:23–29. https://doi.org/10.21577/0100-4042.20170146



• No significant difference (pௗ<ௗ0.05) was observed between 

adapted and non-adapted cells for lipid titer, productivity (QP), 

and yield (YP/S).

• Adaptation did not improve lipid performance, unlike in de 

Almeida et al. (2024) with sugarcane bagasse hydrolysate.

• Both strains reached similar titers (~4.1–4.3 g·L⁻¹) and yields 

(~0.23–0.24 g·g⁻¹), despite 1.52 g·L⁻¹ of total phenols.

• Compared to other studies:

⚬ Di Fidio et al. (2024): QP ~0.024 g·L⁻¹·h⁻¹

⚬ Almeida et al. (2023): YP/S = 0.131 g·g⁻¹

⚬ This study: 2–3× higher QP and ~1.8× higher yield

• Confirms the robustness of R. toruloides in non-detoxified SCG 

hydrolysate for lipid production.

Fermentative Performance: Lipid Production
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Table 4 - Performance parameters for lipid production during fermentation of 

spent coffee grounds hydrolysate by adapted and non-adapted R. toruloides

UFMG-CM-Y2896 cells. The reported values include lipid titter, lipid 

productivity (QP) and yield (YP/S)

de Almeida SGC, Souza JP, Fogarin HM, et al (2024) Assessment of lipid synthesis from sugarcane biomass by adaptive strains of Rhodosporidium toruloides. 

Biomass Convers Biorefin. https://doi.org/10.1007/s13399-024-05499-0



Conclusion 
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•This study demonstrated the feasibility of utilizing spent coffee grounds (SCG)

as a lignocellulosic feedstock to produce fermentable hydrolysates.

• The optimization of the acid pretreatment process identified key operational

parameters—temperature, sulfuric acid concentration, reaction time, and

solid-to-liquid ratio—that yielded a hydrolysate rich in fermentable sugars

(59.19 g·L ¹), predominantly mannose and galactose.
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The SCG hydrolysate, without a detoxification step, served as a

fermentation medium for Rhodosporidium toruloides UFMG-CM-Y2896.

No significant differences were observed in the fermentative performance

between adapted and non-adapted yeast cells, both of which exhibited

effective growth in the hydrolysate and preferential consumption of glucose

and mannose, resulting in lipid accumulation of approximately 4.0 g·L ¹.
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The finds, although preliminary, support the development of strategies to

valorization and enhance the applicability of SCG as a raw material in

sustainable biorefineries and the robust performance of R. toruloides in

non-detoxified SCG hydrolysate supports its application in streamlined,

cost-effective fermentation processes for value-added lipids synthesis.



Future Work 
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•Test performance in detoxified vs. non-detoxified conditions;

•Use of fed-batch or continuous reactors;

•Explore co-fermentation with other microorganisms;

•Techno-economic analysis for scale-up.
31



THANK YOU 32

This study was financed, in part, by the São Paulo Research Foundation

(FAPESP), Brasil. Process Numbers: #2022/03000-0; #2022/11905-3;

#2024/05646-0; #2023/15075-8; #2023/01752-8; #2024/06741-7 and

National Council for Scientific and Technological Development – CNPq.

Project number #316230/2023-5.

ACKNOWLEDGEMENTS


