Advancing Sustainable Bioethanol Production from Organic Waste by Integrating Life Cycle Modeling

Khadija Sajid¹, Muhammad Hassan Javed¹, Anees Ahmad¹, Ala'a H. Al-Muhtaseb², Mohammad Rehan^{3,*}, Mohammad Ilyas Khan⁴, Farayi Musharavati⁵, Muhammad Waqas Anjum⁶, Muhammad Naqvi⁷, Muhammad Ali⁸, Muhammad Rizwan Tabassum⁹, Abdul-Sattar Nizami^{1,*}

¹Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan ²Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University Muscat, Oman

³Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
 ⁴Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
 ⁵Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
 ⁶Chemical Engineering Department, Higher Colleges of Technology, Abu Dhabi Men's Campus, UAE
 ⁷College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
 ⁸Department of Agriculture, Government College University, Lahore 54000, Pakistan
 ⁹Punjab Bioenergy Institute, University of Agriculture, Faisalabad, 38000, Pakistan
 Correspondence: khadijahsajid1998@gmail.com

Abstract

Introduction: The study aims to assess the environmental and economic impacts associated with bioethanol production from the Organic Fraction of Municipal Solid Waste (OFMSW). This study employs a life cycle assessment (LCA) model technique to comprehensively assess the several stages and methods of bioethanol manufacturing from OFMSW. The aim is to gain insights into the sustainability and viability of this bioethanol production method and provide insights that can support the design and establishment of a bioethanol production plant. The city of Lahore generates around 71,000 kg of OFMSW each year, but there is no facility to convert this waste into bioethanol.

Materials and Methods: An attributional LCA was performed to conduct this life cycle impact assessment using the ReCiPe (H) model. It was determined that approximately 154 kg of bioethanol can be produced from every 1 ton of organic waste. Based on the functional unit (1 ton), the findings show that bioethanol synthesis from the mixed waste of organic sources is more environmentally sustainable than current landfilling methods.

Results and Discussions: It has lower impacts on climate change 3.05E-05 kg CO₂ eq, photochemical ozone formation is 132 kg NOx eq, human toxicity 13.6 kg 1,4 DB eq, eutrophication potential, ozone depletion potential, and acidification potential is 10.9 kg P eq, 0.0111 kg CFC-11 eq, -5.39E-03 kg SO₂ eq, respectively. Scenario modelling was carried out to evaluate the use of photovoltaic solar cells for electricity supply. The results revealed a significant decrease in the generation of fine particulate matter, reducing it from 67.8 kg to 0.766 kg PM2.5 equivalent, compared to conventional grid electricity. Hotspot identification was conducted to determine the specific impact categories affected. The economic analysis revealed that the potential to generate bioethanol is \$528,329.631 in annual revenue.

Conclusion: Using bioethanol made from OFMSW as an alternative fuel is both environmentally and economically viable. It also helps to decrease landfill waste. This strategy aligns with the values of the circular economy and contributes to achieving the most famous United Nations Sustainable Development Goals.

References: Abu, R., Ab Aziz, M.A., Hassan, C.H.C., Noor, Z.Z., and Abd Jalil, R. (2021) Life Cycle Assessment analysis with Gabi Software for food waste management using windrow and hybrid composting technologies. Jurnal Teknologi, 83(6), 95-108. http://dx.doi.org/10.11113/jurnalteknologi.v83.17199.

Hegde, S.; Lodge, J.S.; Trabold, T.A (2018) Characteristics of food processing wastes and their use in sustainable alcohol production. Renewable Sustainable Energy Rev, 81, 510–523. https://doi.org/10.1016/J.RSER.2017.07.012. Castañeda-Ayarza JA, Cortez LAB (2021) Final and B molasses for fuel ethanol production and some market implications. Renew Sust Energ Rev 70:1059–1065.

Keywords: Bioethanol production; Circular economy; Life cycle assessment; Sustainability; Waste to energy