Advancing Urban Micromobility: The Role of Supercapacitors in Enhancing Efficiency and Sustainability

Salik Ahmed^{1,3}, Paolo Sospiro^{1,2,3}, Marco Ciro Liscio^{1,2}, Michelangelo-Santo Gulino⁴, Maurizio Laschi⁴, Dario Vangi⁴,

¹ EUAbout, Bruxelles, Bruxelles, 1000, Belgium

² C.I.I./Dipartimento di Ingegneria dell'Informazione, Università Politecnica delle Marche, Ancona, Marche, 60131, Italy;

³ Università Telematica eCampus, Novedrate (CO), Lombardia, 22060, Italy;

⁴ Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, Firenze, Toscana, 50139, Italy

Keywords: Supercapacitors, Batteries, Micromobility, Lifecycle Management, Urban Transport Presenting author email: salik.ahmed@studenti.uniecampus.it

Abstract

Central to micromobility solutions are lithium-ion batteries, valued for their high energy density and efficiency, crucial for urban commuting. However, they pose significant environmental and economic challenges. For example, producing a typical electric vehicle battery for a 250-mile range generates about eight tonnes of CO2 emissions from raw material processing alone. Moreover, with only about 5% of these batteries recycled globally, their life cycle contributes to hazardous waste and resource inefficiency, exacerbated by the micromobility market's rapid growth projected to reach \$150 billion by 2025 (Star Global, n.d.)

Supercapacitors are emerging as a sustainable alternative, offering rapid charging and long cycle life (Kumar, 2024). Advances in technology are increasing their energy density, making them more suitable for micromobility applications. Transitioning to supercapacitors could significantly reduce environmental impacts and dependence on critical raw materials like lithium and cobalt, associated with ethical and ecological concerns.

Micromobility, exemplified by electric scooters and bicycles, has revolutionized urban transport, offering efficient and eco-friendlier alternatives to traditional vehicles. At the core of these devices are lithium-ion (Li-ion) batteries, celebrated for their high energy density 150 to 200 watt-hours per kilogram which enables devices to cover significant distances per charge (Ozawa, 2012). For instance, e-bikes can travel 25 to 70 miles and e-scooters 10 to 30 miles, making them ideal for daily commutes and city trips.

Lithium polymer batteries, a variant of Li-ion, provide greater energy and flexibility in design, enhancing custom micromobility solutions (Long, 2016). Although less prevalent, Nickel-Metal Hydride batteries offer robust safety features and are used in some devices for their stability and resistance to thermal issues, albeit with lower energy density.

Despite these advantages, the quest for more sustainable urban transport solutions is driving interest towards alternatives like supercapacitors. These developments highlight a shift towards enhancing sustainability in urban mobility, aligning with broader environmental goals.

Supercapacitors, also known as ultracapacitors, are emerging as a viable alternative to traditional lithium-ion batteries in micromobility applications (Corti, 2024). They store energy electrostatically, offering advantages such as rapid charging, high power density, and exceptionally long lifespans ideal for the stop-and-go nature of urban traffic.

Moreover, supercapacitors excel in durability, capable of enduring hundreds of thousands to millions of charge-discharge cycles, far surpassing the lifespan of lithium-ion batteries. This longevity reduces maintenance, and replacement costs and minimizes electronic waste, promoting sustainability in urban environments.

Advancements in materials science, including the use of graphene and conductive polymers, are addressing the traditionally lower energy density of supercapacitors, enhancing their practicality for longer urban trips. These developments underscore the growing role of supercapacitors in advancing sustainable urban mobility solutions.

Recent pilot projects underscore the transformative potential of supercapacitors in urban mobility. For example, a 2021 pilot in Berlin (Invers, 2021) demonstrated e-bikes with supercapacitors that charged in under two minutes, greatly reducing wait times. In Paris, fast-charging supercapacitor systems in taxis and solar-powered e-bike stations in Amsterdam (Bikeep) illustrate how these technologies enhance efficiency and sustainability.

Barcelona's trams, equipped to recapture energy, further showcase the potential. These initiatives, supported by advances in materials like graphene, are proving supercapacitors' effectiveness in reducing downtime and improving urban transport systems.

Environmentally, supercapacitors are advantageous as they generally use fewer toxic materials than those needed for traditional batteries, such as lithium and cobalt. This reduces the ethical and environmental concerns linked to mineral extraction. Super capacitors also integrate well with renewable energy sources, enhancing their appeal as a component in sustainable urban transportation solutions.

As supercapacitor technology advances, its application in micromobility is expanding, promising to significantly influence the development of next-generation urban transit systems. Their adoption not only boosts operational efficiency but also supports broader environmental sustainability goals, pivotal for the future of urban living.

Recent advancements are making supercapacitors increasingly viable for micromobility. Innovations in graphene have significantly enhanced their energy storage capacity, while hybrid systems that combine the rapid charge and discharge capabilities of supercapacitors with the high energy density of batteries optimize both range and charging speed. Further developments in electrode materials, including the use of nanotubes and aerogels, have markedly improved supercapacitors' energy storage capabilities.

Global regulations are shifting to support sustainable transportation. Amendments to the Basel Convention now require consent for exporting hazardous waste, and the EU Battery Directive is pushing for more recycled content and tougher recycling goals. Similarly, the U.S. (US Department of Energy, 2023) and China are enhancing battery recycling initiatives. The Global Battery Alliance is also promoting supercapacitors with its "battery passport" to meet strict environmental standards.

The EU's sustainable mobility strategy, part of the Green Deal and Circular Economy Action Plan, targets climate neutrality by 2050. It emphasizes managing batteries sustainably across their lifecycles to reduce their environmental impact. Starting in 2023, the EU Batteries Regulation will enforce strict standards for battery design and recycling to promote a circular economy. Transitioning from batteries to supercapacitors could revolutionize micromobility, reducing reliance on scarce minerals and creating new economic opportunities.

Shifting to supercapacitors, despite some challenges, offers significant potential to make urban transport more sustainable, efficient, and competitive. As this technology progresses, it's expected to play a key role in shaping future eco-friendly urban transport systems.

References

Bikeep. (n.d.). Retrieved from https://bikeep.com/the-cycling-haven-the-netherlands-introduces-bikeep-solar-powered-e-bike-station/

Corti, F. a. (2024). A comprehensive review of charging infrastructure for Electric Micromobility Vehicles: Technologies and challenges. Elsevier.

Dr. Ru-Shi Liu, L. Z. (2011). Retrieved from Willey online library: https://onlinelibrary.wiley.com/doi/book/10.1002/9783527639496

 $Invers.\ (2021).\ Retrieved\ from\ Medium:\ https://inversmobility.medium.com/four-cities-paving-the-way-for-e-bike-sharing-1cf563ed9b6b$

Kumar, Y. A. (2024). Shaping the future of energy: The rise of supercapacitors progress in the last five years. Journal of Energy Storage.

Long, L. a. (2016). Polymer electrolytes for lithium polymer batteries. Royal Society of Chemistry.

Ozawa, K. (2012). Lithium ion rechargeable batteries: materials, technology, and new applications. John Wiley & Sons.

Star Global. (n.d.). Retrieved from https://star.global/posts/micromobility-trends/

US Department of Energy. (2023). Retrieved from https://www.energy.gov/eere/vehicles/funding-selections-bipartisan-infrastructure-law-battery-recycling-reprocessing-and