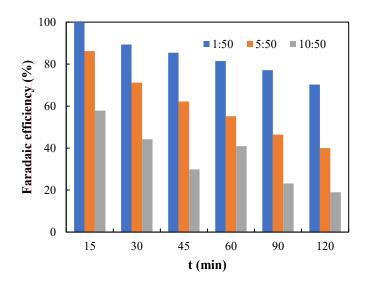
## Influence of Electrode Surface Properties in the Valorization of Waste Biomass for Sustainable Hydrogen Peroxide Production

Á. Ramírez, L. López-Rivilla, M. Muñoz-Morales, E. López-Fernández, J. Llanos\*

Department of Chemical Engineering, University of Castilla-La Mancha, Ciudad Real, Castilla-La Mancha, 13071, Spain


Keywords: Biomass valorization, hydrogen peroxide, oxygen reduction reaction, sustainable carbon materials.

Presenting author email: javier.llanos@uclm.es

Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is an environmentally friendly oxidant widely used in water treatment, disinfection, and various industrial processes, due to its ability to decompose into water and oxygen without forming harmful by-products. Despite its advantages, the traditional anthraquinone process for H<sub>2</sub>O<sub>2</sub> production presents significant drawbacks, including high energy demands, risks associated with transport and storage, and a reliance on fossil-based feedstocks. As a sustainable alternative, it is possible to investigate on the use of waste biomass to produce functional carbon materials for the electrogeneration of H<sub>2</sub>O<sub>2</sub> via the two-electron oxygen reduction reaction (2e<sup>-</sup>ORR) (Cazier *et al.*, 2024).

In this work, *Phragmites australis* (PA), a lignocellulosic waste biomass sourced from natural wetlands, was transformed into carbon-based catalysts through hydrothermal carbonization (HTC) and chemical activation with NaOH. This waste biomass was selected based on promising previous results in H<sub>2</sub>O<sub>2</sub> accumulation (Ramirez *et al.*, 2024). Comprehensive physicochemical analyses, including FTIR, BET surface area measurements, and SEM-EDS imaging, were conducted to correlate material properties with performance metrics.

Electrochemical assays demonstrated that the ratio of carbon catalyst to polytetrafluoroethylene (PTFE) significantly influenced electrode performance. Electrodes prepared with a 1:50 catalyst-to-PTFE ratio achieved optimal results, producing 450 mg L<sup>-1</sup> of H<sub>2</sub>O<sub>2</sub> with a Faradaic efficiency of 70% after 120 minutes. Contact angle measurements (ranging from 120° to 143°) confirmed the formation of effective three-phase boundaries, which facilitated oxygen diffusion and reaction at the catalyst surface (Petsi *et al.*, 2023). Conversely, excessive catalyst loading increased hydrophilicity and reduced efficiency, while lower PTFE content hindered oxygen transport. Figure 1 illustrates the trends in Faradaic efficiency for H<sub>2</sub>O<sub>2</sub> accumulation for different catalyst/PTFE ratios, underscoring the importance of balancing electrode surface properties for an efficient production.



**Fig. 1.** Faradaic efficiency for mixtures 1:50, 5:50 and 10:50 (mg activated PA ml<sup>-1</sup>: mg PTFE ml<sup>-1</sup>). Electrolyte: 0.05 M Na<sub>2</sub>SO<sub>4</sub> with constant aeration and stirring. Potential: -0.9 V vs Ag/AgCl (3M)

Regarding material characterization, the proposed conversion process yielded mesoporous carbon materials with a specific surface area of  $389 \text{ m}^2 \text{ g}^{-1}$  and moderate structural disorder (AD<sub>1</sub>/AG = 1.23), as revealed by Raman spectroscopy. The materials also exhibited oxygenated and nitrogenated functional groups, which are known to enhance the selectivity and efficiency of the  $2e^-$ -ORR.

This study highlights the potential of valorizing waste biomass to develop scalable and sustainable cathodes for electrochemical  $H_2O_2$  production. By leveraging waste-derived materials, the proposed approach aligns with cleaner production practices and circular economy principles, paving the way for more sustainable industrial processes.

## Acknowledgments

Authors gratefully acknowledge the financial support of the projects TED2021-131810A-I00 and PID2022-141265OB-I00 funded by MICIU/AEI/10.13039/501100011033 and by the European Union "NextGenerationEU"/PRTR and FEDER "A way to make Europe", respectively.

## References

- Cazier, E.A., *et al.* (2024). Exploring industrial lignocellulosic waste: Sources, types, and potential as high-value molecules. *Waste Management*, 188, pp. 11 38.
- Petsi, P., et al. (2023). A critical assessment of carbon-based cathodes for in situ electrogeneration of H<sub>2</sub>O<sub>2</sub>. *Electrochimica Acta*, 470, 143337.
- Ramírez, Á., et al. (2024). Innovative carbon materials from lignocellulosic wastes for electrochemical hydrogen peroxide production. *Journal of Environmental Chemical Engineering*, 12, 112985.