Potential of pyrolytic gas from pelletized residual biomass of rice husk and corncob blends: analysis of non-condensable gas evolution in a batch reactor

E.D. Arroyo-Dagobeth^{1,2}, D.D. Otero-Meza², J.J. Cabello-Éras^{3,1}, R. Gómez-Vásquez⁴, J.G. Salcedo-Mendoza², J.E. Hernández-Ruydíaz^{2,1}, C.A. Cardona-Alzate⁵.

¹Departamento de energía, Universidad de la Costa, Atlántico, Barranquilla, Colombia
 ²Departamento de Ingeniería Agroindustrial, Universidad de Sucre, Sincelejo, Sucre, Colombia
 ³Departamento de Ingeniería Mecánica, Universidad de Córdoba, Carrera 6 No. 77-305, Montería, Colombia
 ⁴Facultad de ingeniería Mecánica, Universidad Pontifica Bolivariana, Montería, Córdoba, Colombia
 ⁵Instituto de Biotecnología y Agroindustria, Departamento de Ingeniería Química, Universidad Nacional de Colombia, Manizales campus. Manizales, Colombia.

Keywords: co-pyrolysis, gas production, synergy, thermal conversion.

Presenting author email: earroyo@cuc.edu.co

1. Introduction.

Pyrolysis is the primary chemical reaction preceding combustion and gasification, where organic matter is heated in the absence of oxygen, producing condensable gases, non-condensable gases, and biochar, a carbon-rich solid product [1]. The pyrolysis products are formed through the primary reactions of biomass after a drying process. As temperature increases, the secondary reactions of volatiles and condensables lead to the formation of tars and low-molecular-weight gases.

This study evaluates the composition of combustible gases—hydrogen, carbon monoxide, and methane—to assess the effect of temperature on the calorific value of non-condensable gases and hydrogen production yield. The novelty of this process lies in performing pyrolysis without using carrier gas; instead, the devolatilization itself generates pressurization, forcing gas flow through a capillary.

2. Materials and Methods

The prepared biomass pellets are introduced into an electric furnace for pyrolysis in the absence of oxygen. The process is conducted at different controlled temperatures, varied in 100°C intervals, to observe how gas composition evolves. Figure 1 illustrates the general pyrolysis process configuration, beginning with an electric furnace heating the biomass in an oxygen-free environment (a); the generated vapors and gases are then directed to a condenser (b), where condensable fractions are separated. A filter (c) subsequently removes solid particles and contaminants before the gas is collected in Tedlar bags (d) for further analysis. The pyrolytic gases are captured at different temperatures (300°C to 800°C). The collected gas samples undergo chromatographic analysis to assess the impact of temperature on gas composition.

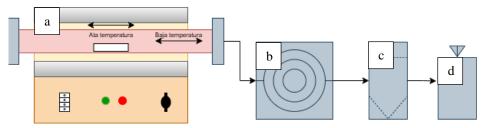


Figure 1. Experimental scheme

3. Results

Below 300°C, the gases contain high amounts of CO₂ and vapors, which do not enhance pyrolytic gas quality. Above 300°C, a sustained flame was observed at the gas outlet (Figure 2a), characterized by a clean, stable blue flame, primarily composed of CO, H₂, and CH₄. The absence of soot suggests a high volatile content in the biomass. Gas evolution as a function of temperature is shown in figure 2b. CO₂ decreases with increasing temperature, while CO and H₂ concentrations rise. Previous studies have predicted this behavior [2], which is typical in pyrolysis, as higher temperatures promote tar reforming with steam, leading to increased H₂ and CO production [3]. (Additionally, methane exhibits a peak concentration around 500°C before decreasing to approximately 3.5% at 800°C, likely due to methane steam reforming reactions, given the continuous rise in hydrogen levels. The average

calorific value of non-condensable gases is estimated at 12 MJ/Nm^3 for temperatures between 300°C and 500°C ,

with hydrogen generation yields exceeding 320 mL H₂/g biomass.

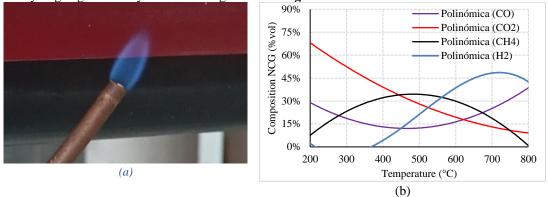


Figure 2. Pyrolysis gas flame (a), Trend non condensable gas evolution (b)

Conclusions

- ✓ The study confirms that batch pyrolysis can be conducted without carrier gas, relying on self-generated pressure. This simplifies the process while producing a hydrogen-rich gas with yields exceeding 320 mL H₂/g biomass, making it a promising renewable hydrogen source.
- ✓ As temperature increases, CO₂ decreases while CO and H₂ concentrations rise, reaching an optimal calorific value of 12 MJ/Nm³ between 300–500°C. Methane peaks around 500°C, then declines due to reforming reactions, further boosting hydrogen production.
- ✓ The high-quality combustible gas, particularly above 600°C, and the reduction of CO₂ below 20% highlight the potential of pyrolysis gas for clean energy applications, including combustion, syngas production, and decentralized hydrogen generation.

References

- [1] C. Di Blasi, C. Branca, A. Santoro, E. Gonzalez Hernandez, Pyrolytic behavior and products of some wood varieties, Combust Flame (2001). https://doi.org/10.1016/S0010-2180(00)00191-7.
- [2] R.D. Gómez-Vásquez, C.A. Marenco-Porto, L.G. Riveros-Almanza, M. Palacio, D.E. Espinosa-Corrales, Predictive modelling of biomass pyrolysis: Product estimation using thermogravimetry, mass balance, and empirical correlations, Results in Engineering 25 (2025) 104071. https://doi.org/10.1016/J.RINENG.2025.104071.
- [3] D.A. Buentello-Montoya, L. Sepúlveda-Montufar, D.O. Pulido-Moreno, Valorization of waste biomass via an integrated gasification system for the co-production of dimethyl ether and urea, Energy 319 (2025) 134891. https://doi.org/10.1016/J.ENERGY.2025.134891.